Business Objective
Derive sentiments from the text that has emojis and characters
Our Solution
- Developed NLP and Ensemble Machine Learning-based Sentiment Analysis model for the
Arabic language.
- Successfully developed ensemble-based machine learning model for sentiment analysis.
Six different sentiments, very positive, positive, very-negative, negative, neutral,
and mixed kinds of sentiment predicated from social network posts represented in
Arabic.
- This entire solution is based on online social network post data.
- After collecting the social network post data for text-wise sentiment analysis we
did all the pre-processing steps like filtration, tokenization, stop-word removal,
stemming, spell checking.
- We used Stanford core NLP for POS-tagging and TF-IDF vectorization in feature
extraction. Then we developed the model using Ensemble Machine Learning Approached.
- For emoji-based sentiment analysis we classified all emojis into six different
sentiments, very-positive, positive, very-negative, negative, neutral, and mixed,
and saved in a dictionary. Then we extracted all emojis from text and found the
Unicode and matched it with the dictionary to find the final sentiment.
- After finding the sentiment from each module we applied the ensemble machine
learning approach, found the weighted average, and based on the weighted average we
found the final sentiment